Despite the success of large language models (LLMs) in various natural language processing (NLP) tasks, the stored knowledge in these models may inevitably be incomplete, out-of-date, or incorrect. This motivates the need to utilize external knowledge to assist LLMs. Unfortunately, current methods for incorporating external knowledge often require additional training or fine-tuning, which can be costly and may not be feasible for LLMs. To address this issue, we propose a novel post-processing approach, rethinking with retrieval (RR), which retrieves relevant external knowledge based on the decomposed reasoning steps obtained from the chain-of-thought (CoT) prompting. This lightweight approach does not require additional training or fine-tuning and is not limited by the input length of LLMs. We evaluate the effectiveness of RR through extensive experiments with GPT-3 on three complex reasoning tasks: commonsense reasoning, temporal reasoning, and tabular reasoning. Our results show that RR can produce more faithful explanations and improve the performance of LLMs.
translated by 谷歌翻译
Data Augmentation (DA) is frequently used to automatically provide additional training data without extra human annotation. However, data augmentation may introduce noisy data that impairs training. To guarantee the quality of augmented data, existing methods either assume no noise exists in the augmented data and adopt consistency training or use simple heuristics such as training loss and diversity constraints to filter out ``noisy'' data. However, those filtered examples may still contain useful information, and dropping them completely causes loss of supervision signals. In this paper, based on the assumption that the original dataset is cleaner than the augmented data, we propose an on-the-fly denoising technique for data augmentation that learns from soft augmented labels provided by an organic teacher model trained on the cleaner original data. A simple self-regularization module is applied to force the model prediction to be consistent across two distinct dropouts to further prevent overfitting on noisy labels. Our method can be applied to augmentation techniques in general and can consistently improve the performance on both text classification and question-answering tasks.
translated by 谷歌翻译
Knowledge base completion (KBC) aims to predict the missing links in knowledge graphs. Previous KBC tasks and approaches mainly focus on the setting where all test entities and relations have appeared in the training set. However, there has been limited research on the zero-shot KBC settings, where we need to deal with unseen entities and relations that emerge in a constantly growing knowledge base. In this work, we systematically examine different possible scenarios of zero-shot KBC and develop a comprehensive benchmark, ZeroKBC, that covers these scenarios with diverse types of knowledge sources. Our systematic analysis reveals several missing yet important zero-shot KBC settings. Experimental results show that canonical and state-of-the-art KBC systems cannot achieve satisfactory performance on this challenging benchmark. By analyzing the strength and weaknesses of these systems on solving ZeroKBC, we further present several important observations and promising future directions.
translated by 谷歌翻译
The electrification of shared mobility has become popular across the globe. Many cities have their new shared e-mobility systems deployed, with continuously expanding coverage from central areas to the city edges. A key challenge in the operation of these systems is fleet rebalancing, i.e., how EVs should be repositioned to better satisfy future demand. This is particularly challenging in the context of expanding systems, because i) the range of the EVs is limited while charging time is typically long, which constrain the viable rebalancing operations; and ii) the EV stations in the system are dynamically changing, i.e., the legitimate targets for rebalancing operations can vary over time. We tackle these challenges by first investigating rich sets of data collected from a real-world shared e-mobility system for one year, analyzing the operation model, usage patterns and expansion dynamics of this new mobility mode. With the learned knowledge we design a high-fidelity simulator, which is able to abstract key operation details of EV sharing at fine granularity. Then we model the rebalancing task for shared e-mobility systems under continuous expansion as a Multi-Agent Reinforcement Learning (MARL) problem, which directly takes the range and charging properties of the EVs into account. We further propose a novel policy optimization approach with action cascading, which is able to cope with the expansion dynamics and solve the formulated MARL. We evaluate the proposed approach extensively, and experimental results show that our approach outperforms the state-of-the-art, offering significant performance gain in both satisfied demand and net revenue.
translated by 谷歌翻译
Event extraction (EE) is the task of identifying interested event mentions from text. Conventional efforts mainly focus on the supervised setting. However, these supervised models cannot generalize to event types out of the pre-defined ontology. To fill this gap, many efforts have been devoted to the zero-shot EE problem. This paper follows the trend of modeling event-type semantics but moves one step further. We argue that using the static embedding of the event type name might not be enough because a single word could be ambiguous, and we need a sentence to define the type semantics accurately. To model the definition semantics, we use two separate transformer models to project the contextualized event mentions and corresponding definitions into the same embedding space and then minimize their embedding distance via contrastive learning. On top of that, we also propose a warming phase to help the model learn the minor difference between similar definitions. We name our approach Zero-shot Event extraction with Definition (ZED). Experiments on the MAVEN dataset show that our model significantly outperforms all previous zero-shot EE methods with fast inference speed due to the disjoint design. Further experiments also show that ZED can be easily applied to the few-shot setting when the annotation is available and consistently outperforms baseline supervised methods.
translated by 谷歌翻译
运输电气化需要越来越多的电动机(例如电动机和电动机存储系统)上的电动机,并且对电动电气的控制通常涉及多个输入和多个输出(MIMO)。本文重点介绍了基于多代理增强学习(MARL)算法的多模式混合动力汽车的能源管理策略的在线优化,该算法旨在解决MIMO控制优化,而大多数现有方法仅处理单个输出控制。基于对基于深层确定性策略梯度(DDPG)基于的MARL算法优化的多模式混合动力汽车(HEV)的能源效率的分析,提出了一种新的与多代理的合作网络物理学习。然后,通过一种新颖的随机方法来设定学习驾驶周期,以加快训练过程。最终,网络设计,学习率和政策噪声被纳入了敏感性分析中,并确定了基于DDPG的算法参数,并研究了与多代理的不同关系的学习绩效,并证明与与不完全独立的关系比率0.2是最好的。与单一代理和多代理的同情研究表明,多代理可以在单一代理方案中获得总能量的4%提高。因此,MAL的多目标控制可以实现良好的优化效果和应用效率。
translated by 谷歌翻译
高密度物体(例如金属植入物和牙科填充物)的存在可以在计算机断层扫描(CT)图像中引入严重的条纹样伪像,从而极大地限制了随后的诊断。尽管已经提出了用于减少金属伪像的各种基于神经网络的方法(MAR),但由于对正式域中的全球环境的利用有限,图像域引入的次生伪像,它们的性能通常不佳,并且需要精确的次要伪像。金属面具。为了解决这些问题,本文探讨了在辛图和图像域中在MAR中的快速傅立叶卷积,并提出了MAR的傅立叶双域网络,称为FD-MAR。具体而言,我们首先提出了一个傅立叶曲调恢复网络,该网络可以利用辛克图范围内的接受环境来填充来自未腐败区域的金属腐败区域,因此对金属痕迹是可靠的。其次,我们在图像域中提出了一个傅立叶细化网络,该网络可以通过探索整个图像范围的上下文信息以局部到全球的方式来完善重建的图像。结果,拟议的FD-MAR可以探索MAR的正式和图像范围的接收场。通过通过复合损失函数优化FD-MAR,广泛的实验结果证明了拟议的FD-MAR在定量指标和视觉比较方面的优越性优于最先进的MAR方法。值得注意的是,FD-MAR不需要精确的金属口罩,这在临床常规中非常重要。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
常识性因果关系推理(CCR)旨在确定普通人认为合理的自然语言描述中合理的原因和影响。尽管缺乏良好的理论框架,但仍然存在很大的学术和实践兴趣,但仍然受到了这个问题的影响。现有的工作通常全心全意地依赖于深层语言模型,并且可能容易受到混淆的共发生。由经典因果原则的促进,我们表达了CCR的主要问题,并在观察性研究和自然语言中与人类受试者之间的相似之处,以采用CCR对潜在的遇到框架,这是第一次进行常识任务的尝试。我们提出了一个新颖的框架岩石,以推理o(a)回合常识性k(c)技术,该仪式利用时间信号作为偶然的监督,并使用类似于倾向得分的时间倾向来混淆效果。岩石实施是模块化的,零射,并且表现出良好的CCR功能。
translated by 谷歌翻译
现有的深度聚类方法依赖于对比学习的对比学习,这需要否定例子来形成嵌入空间,其中所有情况都处于良好分离状态。但是,否定的例子不可避免地引起阶级碰撞问题,损害了群集的表示学习。在本文中,我们探讨了对深度聚类的非对比表示学习,被称为NCC,其基于Byol,一种没有负例的代表性方法。首先,我们建议将一个增强的实例与嵌入空间中的另一个视图的邻居对齐,称为正抽样策略,该域避免了由否定示例引起的类碰撞问题,从而提高了集群内的紧凑性。其次,我们建议鼓励在所有原型中的一个原型和均匀性的两个增强视图之间的对准,命名的原型是原型的对比损失或protocl,这可以最大化簇间距离。此外,我们在期望 - 最大化(EM)框架中制定了NCC,其中E-Step利用球面K手段来估计实例的伪标签和来自目标网络的原型的分布,并且M-Step利用了所提出的损失优化在线网络。结果,NCC形成了一个嵌入空间,其中所有集群都处于分离良好,而内部示例都很紧凑。在包括ImageNet-1K的几个聚类基准数据集上的实验结果证明了NCC优于最先进的方法,通过显着的余量。
translated by 谷歌翻译